

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5533-5536

Discovery of novel and orally active NR2B-selective N-methyl-D-aspartate (NMDA) antagonists, pyridinol derivatives with reduced HERG binding affinity

Makoto Kawai,^{a,*} Hiroshi Nakamura,^a Isao Sakurada,^a Hirohisa Shimokawa,^a Hirotaka Tanaka,^a Miyako Matsumizu,^a Kazuo Ando,^a Kazunari Hattori,^a Atsuko Ohta,^a Seiji Nukui,^a Atsushi Omura^b and Mitsuhiro Kawamura^a

^aDiscovery Chemistry, Pfizer Global Research & Development, Nagoya Laboratories, 5-2, Taketoyo, Aichi 470-2393, Japan ^bPharmaceutical R&D, Pfizer Global Research & Development, Nagoya Laboratories, 5-2, Taketoyo, Aichi 470-2393, Japan

Received 14 June 2007; revised 30 July 2007; accepted 2 August 2007 Available online 22 August 2007

Abstract—Novel NR2B antagonists with an amide tether were found by an approach to avoid pharmacophoric similarity to dofetilide. Structure–activity relationship investigation led to N-[cis-4-hydroxy-4-(5-hydroxypyridin-2-yl)cyclohexyl]-3-henylpropanamide **14e** as an orally active NR2B-subtype selective N-methyl-D-aspartate (NMDA) receptor antagonist with very weak HERG (human ether-a-go-go related gene) binding (IC₅₀ > 30 μ M). This compound exhibited potent in vivo anti-allodynic activity in the mouse partial sciatic nerve ligation (PSL) model (minimum effective dose = 10 mg/kg, po). © 2007 Elsevier Ltd. All rights reserved.

N-Methyl-D-aspartate (NMDA)-type glutamate receptors are widely distributed in the brain and spinal cord and play critical roles in learning, memory, motor control, and pain transmission. Non-selective NMDA receptor antagonists have shown pain relief in various clinical and animal studies. However, the clinical development of non-selective antagonists has been hampered by unfavorable side-effects due to non-specific actions at analgesic doses. 5-7

Functional NMDA receptors consist of heteromeric combinations of the NR1 subunits and one or more subunits designated as NR2A, 2B, 2C, and 2D. Various heteromeric NMDA receptor channels formed by combinations of NR1 and NR2 subunits are known to differ in neuronal function. NR2B-containing NMDA receptors are expressed predominantly in the forebrain and spinal cord.¹ Therefore NR2B selective antagonists are believed to have improved safety profile. In fact, CP-101,606 (1), an NR2B-selective NMDA antagonist, demonstrated wider safety profile

than non-selective NMDA antagonists in animal models.⁸ Moreover, it was recently reported that compound **1** is significantly effective to reduce pain intensity in patients with spinal cord injury and monoradiculopathy without significant adverse events ⁹ (Fig. 1).

We had already reported identification of compound 2, a novel NR2B selective NMDA antagonist, starting from CP-101,606 as a lead compound. Compound 2 has an improved profile over CP-101,606 (1) in terms of pharmacokinetic (PK) variability and QT prolongation. Nevertheless, QT prolongation, which is believed to cause lethal arrhythmia, was still a concern for compound 2 because of its moderate HERG (human ethera-go-go related gene) current inhibitory activity (iHERG IC₂₀ = 1.1 μ M). Potential risk of structure-related toxicity was another concern due to the anilide¹¹ and hydroxyphenylpiperidine¹² moieties. Thus, further research was conducted to find structurally distinct back-up development candidates with minimal HERG activity.

Most of the NR2B antagonists including 1 and 2 were derived from ifenprodil (3). The pharmacophore of

Keywords: HERG; NMDA; NR2B; Pain; Solubility.

^{*}Corresponding author. E-mail: makoto.kawai@pfizer.com

Figure 1. Structures of NR2B selective antagonists, dofetilide (4) and a nonbasic ifenprodil derivative 5.

HO 7
$$\frac{10}{7}$$
 $\frac{10}{8}$ $\frac{10$

Scheme 1. Reagents and conditions: (a) BnBr, K₂CO₃, acetone, reflux 95%; (b) i—BnNH₂, Ti(O[†]Pr)₄, THF, rt; ii—NaBH₄, methanol, 0 °C–rt; iii—column chromatography, 43%; (c) 20% Pd(OH)₂–C, methanol, H₂ (4 atm), rt, 85%; (d) RCOOH, EDCI, HOBt, CH₂Cl₂, rt.

these NR2B antagonists consists of a basic aliphatic amine at the center of the molecule and two aromatic rings.¹³ HERG channel blockers represented by dofetilide (4) also have a similar pharmacophore consisting of a basic nitrogen and lipophilic sites located at a certain distance from the basic nitrogen. 14,15 Especially the basic amine enhances affinity for the HERG potassium channel. For example, compound 5 without a basic amine exhibited significantly weaker HERG activity (>30 μ M) than the (S,S)-isomer of ifenprodil (3) (<1 μM). Therefore, we revisited nonbasic compounds previously synthesized in our NR2B programs. Among them, compound 6a exhibited extremely low HERG activity (IC₅₀ > 30 μ M) and then was selected as a lead. Due to insufficient NR2B activity (IC₅₀ = 30 nM) and poor solubility ($<5 \mu g/ml$ at pH of the small intestine) compound 6a, our efforts were focused on solving two issues.

To improve the aqueous solubility, the first attempt was made to replace the benzene ring with various heteroaromatics and to introduce a basic moiety at the position away from the center of the molecule by parallel synthesis. (Scheme 1) Benzylation of 4-(4-hydroxyphenyl)cyclohexanone (7) with benzyl bromide and potassium carbonate yielded ketone 8. Reductive amination of 8 followed by chromatographic purification to remove a *cis*-isomer afforded amine 9. Deprotection of 9 afforded a key intermediate 10 which was coupled with various carboxylic

acids to build a compound library of cyclohexylamides **6**.

Data of representative examples are summarized in Table 1. As expected, HERG activities of all the compounds were very low (>30 μ M). However, replacement of the benzene ring with heterocycles led to moderate or complete loss of the affinity to the NR2B receptor. Introduction of an amine moiety also had a deleterious effect on the NR2B binding (6f and 6g). Therefore, the dihydrocinnamic acid moiety was fixed for further modification.

Next we shifted our efforts onto the phenol moiety. A divergent synthetic route was developed to expedite analogue synthesis (Scheme 2). Amidation of dihydrocinnamic acid with *trans*-aminocyclohexanol 11 afforded alcohol 12. Swern oxidation of 12 yielded ketone 13, which was subsequently treated with dianions generated from 4-bromophenol derivatives to provide cyclohexanol derivatives 14 as a desired isomer by chromatographic purification. Compounds 15 were finally obtained by dehydration followed by hydrogenation. This procedure worked well not only for phenols but also for heterocycles.

Table 2 summarizes the SAR results around cyclohexane and cyclohexanol derivatives. This modification did not affect the HERG activity as well. It was revealed that intermediates 14(a-d) generally showed better solubility and NR2B activity than the corresponding cyclo-

Table 1. NR2B IC₅₀, HERG IC₅₀, and solubility of heterocycles

R	NR2B IC ₅₀ ^a (nM)	HERG IC ₅₀ ^b (μM)	Solubility at pH 6.5° (µg/ml)
7220	30	>30	<5
Z-Z-Z-Z-Z-N	>1000	>30	NT^d
N. N.	856	>30	92
N S	96	>10 ^c	9
Zofozofo N	>1000	NT^d	NT^d
HN	>1000	>30	18
N N	>1000	NT^{d}	NT^d
	Todoron Todoro	30 7-2-6-7-2 N >1000	IC ₅₀ ^a IC ₅₀ ^b (nM) (μM) 30 >30

^a Measured as the IC₅₀ value for displacement of tritiated racemic CP-101,606 from the rat forebrain P2 membrane.

hexane derivatives **6a** and **15(b-d)**. Thus, instead of cyclohexane derivatives, SAR around cyclohexanol derivatives **14** was pursued further with other heterocycles to improve solubility. Replacement with heterocycles resulted in loss of potency except for 3-pyridinol **14e**. Introduction of methyl group to **14e** also led to

Table 2. NR2B IC₅₀, HERG IC₅₀, and solubility of phenols

Compound	R	X	NR2B IC ₅₀ (nM)	HERG IC ₅₀ (μM)	Solubility (at pH 6.5, µg/ml)
	7%				
14a	La series de la se	ОН	19	>30	20
6a	но	Н	30	>30	<5
14b	7	ОН	189	>10 ^a	<5
15b	но	Н	>5000	ND^b	<5
	722				
14c	No.	ОН	25	>10 ^a	22
15c	но	Н	722	>30	<5
	700				
14d	F	ОН	13	>30	17
15d	но	Н	59	>10 ^a	NT^c

^a Not measured due to low solubility at 30 μM in the assay.

weaker NR2B activity probably due to its steric hindrance. Compound **14e** with 3-pyridinol moiety did embody the best compound with desired profiles of both potency and solubility (Table 3).

Compound $14e^{16}$ exhibited potent analgesic activity in the mouse partial sciatic nerve legation (PSL) model (minimum effective dose = 10 mg/kg, po) and exhibited much lower HERG current inhibitory activity (9% at $30 \mu\text{M}$). In addition, this compound possesses a good PK profile, high metabolic stability (>60 min), and bioavailability (27%) (Table 4).

In summary, we identified a new lead NR2B antagonist by taking a strategy to avoid pharmacophoric similarity to dofetilide in order to minimize HERG current inhibitory activity. Further efforts to improve solubility and NR2B activity of the lead have yielded 14e with potent analgesic activity and very weak HERG current inhibitory activity.

Scheme 2. Reagents and conditions: (a) PhCH₂CH₂COOH, EDCI, HOBt, CH₂Cl₂, rt, 85%; (b) Swern oxidation, 93%, -60 °C \sim rt; (c) ArLi (3 equiv), THF, -78 °C; (d) i—CF₃COOH, CH₂Cl₂, rt; ii—10% Pd/C, MeOH, H₂, rt.

b Measured as the IC₅₀ value for displacement of tritiated dofetilide from human HERG channel expressed in HEK(human embryonic kidney)293 cells.

^c Not measured due to low solubility at 30 μM in the assay.

^d NT, not tested.

^e Using a KH₂PO₄–Na₂HPO₄ buffer adjusted by KOH.

^b Not detected due to low solubility at 10 μM in the assay.

^c NT. not tested.

Table 3. NR2B IC₅₀, HERG IC₅₀, and solubility of heterocyclic analogues

	0		
Compound	R	NR2B IC ₅₀ (nM)	Solubility (at pH 6.5, µg/ml)
14e	HON	10	130
14f	O N N Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	85	69
14g	HON	116	NT
14h	S N N	>5000	NT
14i	H ₂ N N	>5000	NT
14j	HN Z	>5000	NT
14k	N HN	2440	NT
141	N N N N N N N N N N N N N N N N N N N	4960	NT

Table 4. Pharmacological profile of compound 14e

NR2B binding (IC ₅₀)	10 nM
HERG binding (IC ₅₀)	>30 μM
HERG current inhibition at 30 μM	9%
Solubility at pH 6.5	130 μg/ml
$t_{1/2}$ in human liver microsomes	>60 min
Bioavailability in mice	27%
Mouse in vivo model (PSL) ^a	10 mg/kg
Minimum effective dose (po)	

^a The mouse partial sciatic nerve ligation (PSL) model. ¹⁷

Acknowledgments

The authors thank Dr. Rodney W. Stevens for his valuable suggestion.

References and notes

- Parsons, C. G.; Danysz, W.; Quack, G. Drug News Perspect. 1998, 11, 523.
- 2. Hughes, A. M.; Rhodes, J.; Fisher, G.; Sellers, M.; Growcott, J. W. Br. J. Clin. Pharmacol. 2002, 53, 604.
- 3. Knox, D. J.; McLeod, B. J.; Goucke, C. R. Anaesthesia Intensive Care 1995, 23, 620.
- Max, M. B.; Byas-Smith, M. G.; Gracely, R. H.; Bennett, G. J. Clin. Neuropharmacol. 1995, 18, 360.
- Ilkjaer, S.; Dirks, J.; Brennum, J.; Wernberg, M.; Dahl, J. B. Br. J. Anaesthesia 1997, 79, 600.
- McCartney, C. J. L.; Sinha, A.; Katz, J. Anesthesia Analgesia (Hagerstown, MD, United States) 2004, 98, 1385.
- Nelson, K. A.; Park, K. M.; Robinovitz, E.; Tsigos, C.; Max, M. B. Neurology 1997, 48, 1212.
- Chenard, B. L.; Bordner, J.; Butler, T. W.; Chambers, L. K.; Collins, M. A.; De Costa, D. L.; Ducat, M. F.; Dumont, M. L.; Fox, C. B., et al. *J. Med. Chem.* 1995, 38, 3138.
- Sang, C. N.; Jinga, L.; Wouden, J.; Saltarelli, M. D. Soc. Neurosci. Abstr. 2003, 814.
- 10. Kawai, M., Bioorg. Med. Chem. Lett., in press.
- Eiskjaer, H.; Schmiegelow, M.; Jespersen, B.; Tietze, I. N.; Jensen, J. D.; Soerensen, S. S.; Thomsen, K.; Pedersen, E. B. Eur. J. Clin. Pharmacol. 1991, 41, 547.
- Usuki, E.; Van Der Schyf, C. J.; Castagnoli, N., Jr. *Drug Metab. Rev.* 1998, 30, 809.
- Kornberg, B. E.; Nikam, S. S.; Wright, J. L.; Kesten, S. R.; Meltzer, L. T.; Coughenour, L.; Barr, B.; Serpa, K. A.; McCormick, J. *Bioorg. Med. Chem. Lett.* 2004, 14, 1213.
- Cavalli, A.; Poluzzi, E.; De Ponti, F.; Recanatini, M. J. Med. Chem. 2002, 45, 3844.
- Du, L.-P.; Tsai, K.-C.; Li, M.-Y.; You, Q.-D.; Xia, L. Bioorg. Med. Chem. Lett. 2004, 14, 4771.
- 16. Chemical data of compound 14e; ¹H NMR (300 MHz, DMSO-*d*₆) δ. 9.68 (br s, 1H), 8.03 (d, *J* = 2.6 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 8.6 Hz, 1H), 7.31–7.09 (m, 6H), 4.88 (s, 1H), 3.64–3.48 (m, 1H), 2.81 (t, *J* = 7.6 Hz, 2H), 2.34 (t, *J* = 7.6 Hz, 2H), 1.98–1.80 (m, 2H), 1.70–1.47 (m, 6H); MS (ESI) *m/z* 339.21 (M–H⁺); Anal. Calcd for C₂₀H₂₄N₂O₃: C, 70.56; H, 7.11; N, 8.23. Found: C, 70.19; H, 7.11; N; 7.99.
- 17. The method of PSL in mice is described in WO2005035523.